Crystal Structures of Di-iron $\mu-\eta^{2}$-(C,C)-Ketene Complexes, $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)\right]$ and $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)\right]$. Synergistic Metal-to-Ligand Back Donation as revealed by Comparison with $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)\right] \dagger$

Munetaka Akita,* Atsuo Kondoh, and Yoshihiko Moro-oka*
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Abstract

The solid-state structures of di-iron μ-ketene complexes $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)\right]$ (1) and $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)\right]$ (2) and of a reference complex, $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}(\mu-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$)] (3), have been determined by single-crystal X-ray diffraction. In accord with previous spectroscopic studies, the geometry of the bridging ketene ligands reflects three resonance structures. In particular, the contribution of the π-complex form is verified based on the observations that the $\mathrm{CH}_{2}-\mathrm{CO}$ bond is shortened and the $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ bond is elongated compared with the situation in complex (3) which lacks the π-complex form. The geometry around the metal centres is determined by the need to minimize steric repulsions among ancillary ligands, and does not reflect orbital interactions.

The structure and chemical behaviour of ketene ligands in polymetallic systems ${ }^{1}$ have been attracting much attention, because ketene species are often referred to as an origin of oxygenated products in catalytic hydrogenation of carbon monoxide. ${ }^{2}$ We

previously reported the preparation, spectroscopic characterization, and reactivities of heterobimetallic $\mu-\eta^{2}$-(C,C)-ketene complexes, $(\mathrm{OC})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{ML}_{n}(\mathrm{M}=\mathrm{Fe}, \mathrm{Co}$, $\left.\mathrm{Ni}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{L}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{CO}, \mathrm{PR}_{3}\right)^{3}$ Spectroscopic studies show that the structures of these binuclear μ-ketene complexes may be regarded as 1,4-dimetalla-2-butanones (A) without mutual interaction between Fe and M. Furthermore, i.r. studies

reveal a significant contribution of the π-complex resonance form (C) in addition to the oxycarbene structure (B) which is well established for mononuclear acyl complexes. The structure (C) arises from $d_{\pi}-p_{\pi}$ back donation from the metal centre β to the acyl carbonyl group (so-called β effect). ${ }^{4}$

In this article we describe the results of structural determinations of the complexes $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)\right]$ (1) and $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)\right]$ (2), and a μ oxopropanediyl complex, $\left[\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.\right.$ CO)] (3), by single-crystal X-ray diffraction. Since (3) lacks a

[^0]π-resonance form like (\mathbf{C}) which is suitable for back donation, substantial differences are observed between (1), (2), and (3). Complexes (1) and (2) are the third examples of structurally characterized $\mu-\eta^{2}$-(C,C)-ketene complexes. ${ }^{5,6}$

Experimental

All manipulations were performed under an argon atmosphere by using standard Schlenk-tube techniques. The analytical facilities used and the preparation of complexes (1) and (3) have been described previously. ${ }^{3}$ After thrice repeated recrystallization from diethyl ether-hexane, (1) contained one molecule of water.

Preparation of Complex (2). ${ }^{3}$ - Treatment of $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)\right]^{7}(2.75 \mathrm{~g}, 9.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ with oxalyl dichloride ($1.1 \mathrm{~cm}^{3}, 15 \mathrm{mmol}$) resulted in vigorous gas evolution. After 10 min the volatiles were removed under reduced pressure. To the residue dissolved in tetrahydrofuran (thf) $\left(10 \mathrm{~cm}^{3}\right)$ and cooled at $-78^{\circ} \mathrm{C}$ was added a thf solution ($50 \mathrm{~cm}^{3}$) generated by reduction of [$\left.\left\{\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\right\}_{2}\right]$ ($2.65 \mathrm{~g}, 5.4 \mathrm{mmol}$) by $\mathrm{NaK}_{2.8}$ alloy (1 g). After stirring for 1 h at room temperature the solvent was removed under reduced pressure. Extraction with ether and column chromatography on alumina (activity II-III: Merck Art. 1097) afforded the above dimer [purple band eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:5)] followed by a yellow band (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) from which complex (2) $(1.45 \mathrm{~g}, 2.71 \mathrm{mmol}, 50 \%$ yield) was isolated as yellow crystals after recrystallization from ether-hexane, m.p. $173^{\circ} \mathrm{C}$ (Found: C, $58.20 ; \mathrm{H}, 6.00 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Fe}_{2} \mathrm{O}_{5}$ requires C, $58.25 ; \mathrm{H}, 6.00 \%$); $v(\mathrm{C} \equiv \mathrm{O}) 1992,1977,1932$, and $1933 \mathrm{~cm}^{-1}, v(\mathrm{C}=\mathrm{O}) 1585 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.43,1.67\left(15 \mathrm{H} \times 2, \mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$, and 2.35 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}} 9.09\left[\mathrm{q}, J(\mathrm{CH}) 127.5, \mathrm{C}_{5} \mathrm{Me}_{5}\right], 9.72[\mathrm{q}, J(\mathrm{CH})$ $127.2, \mathrm{C}_{5} \mathrm{Me}_{5}$], 41.17 [$\mathrm{t}, J(\mathrm{CH})$ 133.6, $\left.\mathrm{CH}_{2}\right], 94.81,96.95$ $\left(\mathrm{s} \times 2, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 218.65,218.87(\mathrm{~s} \times 2, \mathrm{Fe}-\mathrm{C} \equiv \mathrm{O})$, and 260.90 p.p.m. $\left[\mathrm{t},{ }^{2} J(\mathrm{CH}) 3.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right]$.

Structure Analyses and Refinement.-Diffraction measurements were made on a Rigaku AFC-5 automated four-circle diffractometer by using graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation $(\lambda=0.71068 \AA)$. Unit cells were determined and refined by a least-squares method using 20 independent reflections with

Table 1. Crystallographic data ${ }^{a}$

Compound	(1). $\mathrm{H}_{2} \mathrm{O}$	(2)	(3)
Formula	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Fe}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Fe}_{2} \mathrm{O}_{5}$	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Fe}_{2} \mathrm{O}_{5}$
a / \AA	9.8110 (20)	10.2102 (16)	$7.9867(109)$
b / \AA	14.071 7(23)	16.546 9(19)	$19.6307(30)$
c / \AA	7.043 1(10)	8.337(34)	$6.7831(85)$
$x{ }^{10}$	98.407(17)	92.602(24)	91.103(47)
$\beta{ }^{\circ}$	97.525(19)	101.616(28)	127.803(55)
$\gamma{ }^{\circ}$	119.956(11)	108.243(11)	91.006(48)
U / \AA^{3}	809.46(28)	1301.40 (62)	839.56(168)
M	414.0	536.2	410.0
$D_{c} / \mathrm{g} \mathrm{cm}^{-3}$	1.70	1.37	1.62
$\boldsymbol{\mu}\left(\mathrm{Mo}-K_{\alpha}\right)$	17.316	10.825	16.651
$F(000)$	414	536	410
Crystal size/mm	$0.20 \times 0.30 \times 0.35$	$0.20 \times 0.25 \times 0.30$	$0.15 \times 0.25 \times 0.35$
No. of reflections with $F>3 \sigma(F)$	3990	4395	3422
R	5.22	8.56	6.63
R^{\prime}	5.18	9.50	7.39

${ }^{a}$ Details common to all three complexes: triclinic; space group $P \overline{1} ; Z=2 .{ }^{b} R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}$.

Figure 1. Molecular structure of complex (1) with thermal ellipsoids at the 50% probability level

Figure 2. Molecular structure of complex (2) with thermal ellipsoids at the 20% probability level
$25<2 \theta<30^{\circ}$. Data were collected over the range $2<2 \theta<60^{\circ}$ with the $\omega-2 \theta$ scan technique and the scan speed was $6^{\circ} \mathrm{min}^{-1}$. If $\sigma(F) / F$ was more than 0.1 , a scan was repeated up to three times and the results were added to the first scan. Three standard reflections were monitored every 100 measurements. Crystal data, data-collection parameters, and results of the analyses are listed in Table 1. All data processing was performed on a FACOM A-70 computer by using the R-CRYSTAN structure-solving program obtained from Rigaku Corp. Neutral scattering factors were obtained from the standard sources. ${ }^{8}$ In reducing the data, Lorentz and polarization corrections were made but no absorption correction. Full-matrix least-squares

Figure 3. Molecular structure of complex (3) with thermal ellipsoids at the 50% probability level
refinements minimized the function $\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}$ where $w=1 /\left[\sigma\left(F_{\mathrm{o}}\right)^{2}+\left(p F_{\mathrm{o}}\right)^{2}\right]$, the parameter p being automatically optimized.

All the compounds (1)-(3) crystallized in the triclinic system $(P \overline{1})$. The positions of the Fe atoms were located by the Patterson method for (1) and (3) and by the direct method for (2). Subsequent Fourier difference maps revealed the positions of all other atoms of (1) and (3) and all non-hydrogen atoms of (2). For (1) and (3) all atoms were refined with anisotropic thermal parameters for non-hydrogen atoms and with isotropic thermal parameters for hydrogen atoms. For (2) all nonhydrogen atoms were refined anisotropically and only two methylene protons on the ketene bridge were refined isotropically.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Results and Discussion

ORTEP drawings of complexes (1)--(3) are reproduced in Figures 1-3, positional parameters in Tables 2-4 and selected bond lengths and bond angles in Tables 5 and 6 . The molecular structures of (1) and (2) confirm that the ketene complexes obtained by our preparative method adopt the 1,4-dimetalla-2butanone structure without mutual interaction between two iron atoms [$\mathrm{Fe}-\cdots \mathrm{Fe} 4.450$ (1) \AA for (1) and 4.521 (2) \AA for (2)]

Table 2. Positional parameters for non-hydrogen atoms of complex (1) $\cdot \mathrm{H}_{2} \mathrm{O}$

		Y / b	Z / c
Atom	X / a	Y / b	
CP^{a}	0.78436	0.22925	0.73814
$\mathrm{CP} 2^{b}$	1.48185	0.26773	1.22060
$\mathrm{Fe}(1)$	$0.85752(6)$	$0.21828(5)$	$0.96576(7)$
$\mathrm{Fe}(2)$	$1.34493(6)$	$0.30538(5)$	$1.27760(7)$
$\mathrm{C}(1)$	$1.02426(56)$	$0.16855(38)$	$0.98554(63)$
$\mathrm{C}(2)$	$1.10740(47)$	$0.18686(32)$	$1.19075(57)$
$\mathrm{C}(11)$	$0.86967(68)$	$0.20596(53)$	$0.66409(68)$
$\mathrm{C}(12)$	$0.71199(68)$	$0.12910(44)$	$0.67844(71)$
$\mathrm{C}(13)$	$0.65243(60)$	$0.18967(47)$	$0.77228(75)$
$\mathrm{C}(14)$	$0.77276(69)$	$0.30516(47)$	$0.82095(77)$
$\mathrm{C}(15)$	$0.91033(68)$	$0.31636(47)$	$0.75493(77)$
$\mathrm{C}(16)$	$0.96117(54)$	$0.32961(38)$	$1.18194(68)$
$\mathrm{C}(17)$	$0.74016(52)$	$0.12048(37)$	$1.09470(59)$
$\mathrm{C}(21)$	$1.56847(62)$	$0.35890(44)$	$1.19734(87)$
$\mathrm{C}(22)$	$1.57684(60)$	$0.32826(47)$	$1.37158(81)$
$\mathrm{C}(23)$	$1.45338(69)$	$0.21354(50)$	$1.33922(92)$
$\mathrm{C}(24)$	$1.37082(63)$	$0.17386(44)$	$1.14350(102)$
$\mathrm{C}(25)$	$1.43976(71)$	$0.26409(53)$	$1.05134(71)$
$\mathrm{C}(26)$	$1.32262(50)$	$0.40840(35)$	$1.18941(63)$
$\mathrm{C}(27)$	$1.31279(53)$	$0.33921(35)$	$1.50984(66)$
$\mathrm{O}(1)$	$1.03966(35)$	$0.12509(25)$	$1.29597(46)$
$\mathrm{O}(11)$	$1.01673(47)$	$0.40177(31)$	$1.32162(53)$
$\mathrm{O}(12)$	$0.65838(41)$	$0.06018(29)$	$1.17805(50)$
$\mathrm{O}(21)$	$1.31655(41)$	$0.47890(26)$	$1.13228(50)$
$\mathrm{O}(22)$	$1.28860(44)$	$0.35912(29)$	$1.66332(50)$
$\mathrm{O}(2)$	$1.21436(50)$	$0.07614(37)$	$1.60531(65)$

${ }^{a} \mathrm{CP} 1$: centroid of $\mathrm{C}(11)-\mathrm{C}(15) .{ }^{b} \mathrm{CP} 2$: centroid of $\mathrm{C}(21)-\mathrm{C}(25)$.

Table 3. Positional parameters for non-hydrogen atoms of complex (2)

Atom	X / a	Y / b	Z/c
CP1 ${ }^{\text {a }}$	0.10155	0.91554	0.12723
CP2 ${ }^{\text {b }}$	0.38825	0.58805	0.42550
$\mathrm{Fe}(1)$	$0.16170(10)$	0.877 82(6)	$0.30937(11)$
$\mathrm{Fe}(2)$	$0.26541(10)$	0.639 75(6)	$0.44436(13)$
C(1)	$0.30080(81)$	0.809 41(54)	0.317 36(121)
C(2)	0.32401 (77)	0.767 84(47)	$0.46830(93)$
C(3)	0.270 24(89)	0.941 73(53)	0.489 52(99)
C(4)	0.054 47(84)	0.804 39(54)	0.416 08(99)
C(5)	0.104 33(89)	0.624 72(53)	0.304 32(120)
C(${ }^{\text {) }}$	0.193 45(93)	0.639 59(54)	0.617 54(120)
C(0)	$-0.01178(95)$	0.901 34(95)	0.159 80(133)
C(11)	0.099 51(133)	0.977 97(65)	$0.20776(93)$
C(12)	0.214 48(86)	0.966 85(59)	0.143 86(108)
C(13)	0.170 44(121)	0.887 01(66)	0.057 29(99)
C(14)	$0.03510(130)$	0.844 55(62)	0.067 44(114)
C(15)	-0.155 96(126)	0.880 59(157)	0.187 98(213)
C(16)	$0.10503(227)$	1.059 58(90)	0.299 28(139)
C(17)	0.363 81(118)	1.035 60(102)	0.156 25(187)
$\mathrm{C}(18)$	0.246 42(227)	0.849 03(129)	-0.049 07(158)
C(19)	-0.049 70(228)	0.751 62(84)	-0.020 11(178)
C(20)	0.297 86(106)	0.527 98(84)	0.353 69(246)
C(21)	0.346 57(123)	0.539 97(62)	0.512 44(191)
C(22)	0.450 02(99)	0.615 96(62)	0.556 21(102)
C(23)	0.473 23(87)	$0.65516(53)$	0.419 38(147)
C(24)	0.373 59(148)	$0.60116(111)$	$0.28580(108)$
C(25)	0.179 92(157)	0.451 18(129)	$0.25076(397)$
C(26)	$0.29577(200)$	0.477 15(101)	$0.63031(294)$
C(27)	0.526 29(194)	0.643 31(126)	0.736 27(158)
C(28)	0.589 25(136)	$0.73514(86)$	$0.41350(323)$
C(29)	0.353 56(313)	$0.60861(206)$	0.106 32(166)
$\mathrm{O}(1)$	0.382 79(68)	$0.80815(35)$	$0.60191(72)$
$\mathrm{O}(2)$	$0.33824(74)$	$0.99125(41)$	$0.60191(77)$
$\mathrm{O}(3)$	$-0.02217(68)$	0.761 09(46)	0.484 23(84)
$\mathrm{O}(4)$	-0.002 50(65)	0.608 87(44)	0.210 68(99)
$\mathrm{O}(5)$	0.152 08(90)	0.640 48(53)	0.734 85(95)

${ }^{a} \mathrm{CP}$ 1: centroid of $\mathrm{C}(10)-\mathrm{C}(14) .{ }^{b} \mathrm{CP} 2$: centroid of $\mathrm{C}(20)-\mathrm{C}(24)$.

Table 4. Positional parameters for non-hydrogen atoms of complex (3)

Atom	X/a	Y / b	Z/c
CP1 ${ }^{\text {a }}$	-0.32537	0.36961	0.06256
CP2 ${ }^{\text {b }}$	0.16004	0.11073	-0.13780
$\mathrm{Fe}(1)$	-0.056 93(10)	0.378 07(2)	$0.30874(11)$
$\mathrm{Fe}(2)$	$0.19143(10)$	0.128 59(3)	$0.13540(13)$
C(11)	$-0.30544(78)$	$0.31235(35)$	0.020 13(118)
C(12)	-0.347 37(90)	0.333 66(41)	$0.18124(133)$
C(13)	$-0.36209(87)$	$0.40473(38)$	0.177 32(133)
C(14)	-0.323 67(101)	0.427 47(37)	0.014 60(139)
C(15)	-0.288 28(90)	$0.36983(41)$	$-0.08050(115)$
C(16)	$0.13515(80)$	$0.43068(28)$	0.334 33(93)
C(17)	0.051 05(77)	0.390 83(26)	0.620 87(98)
C(21)	0.012 79(121)	0.146 23(50)	$-0.24650(115)$
C(22)	0.223 49(145)	0.168 06(41)	-0.127 08(142)
C(23)	0.349 34(121)	0.109 22(50)	$-0.01647(142)$
C(24)	0.208 08(132)	0.053 73(40)	-0.080 58(138)
C(25)	$0.00652(118)$	$0.07642(41)$	-0.218 37(124)
C(26)	0.359 27(93)	0.089 00(31)	$0.42157(109)$
C(27)	-0.01250(81)	$0.13388(29)$	0.160 81(96)
C(1)	0.141 66(77)	$0.29744(25)$	0.410 09(93)
C(2)	$0.18609(95)$	0.279 50(29)	0.227 64(111)
C(3)	0.328 34(77)	0.217 95(26)	0.313 75(96)
$\mathrm{O}(1)$	0.516 40(56)	$0.22513(19)$	$0.47633(78)$
$\mathrm{O}(11)$	0.259 22(72)	0.466 09(23)	0.352 87(87)
$\mathrm{O}(12)$	0.118 82(71)	0.399 49(25)	0.826 36(77)
$\mathrm{O}(21)$	0.470 92(84)	0.064 15(26)	0.611 88(87)
$\mathrm{O}(22)$	$0.15113(63)$	$0.13547(25)$	0.170 53(87)

${ }^{a} \mathrm{CP} 1$: centroid of $\mathrm{C}(11)-\mathrm{C}(15) .{ }^{b} \mathrm{CP} 2$: centroid of $\mathrm{C}(21)-\mathrm{C}(25)$.

Table 5. Selected intramolecular bond lengths (\AA) for complexes (1)-(3)

	(1)	(2)	(3)
$\mathrm{C}-\mathrm{C}(\mathrm{Cp1})_{\text {av. }}{ }^{\text {a }}$	1.409	1.400	1.393
$\mathrm{C}-\mathrm{C}(\mathrm{Cp} 2)_{\text {av. }}{ }^{\text {b }}$	1.396	1.366	1.400
$\mathrm{C}(\mathrm{Cp} 1)-\mathrm{Me}_{\mathrm{av}}{ }^{\text {a }}$		1.527	
$\mathrm{C}(\mathrm{Cp} 2)-\mathrm{Me}_{\mathrm{av}}{ }^{\text {b }}$		1.505	
$\mathrm{C}(\mathrm{Cp} 1)-\mathrm{Fe}(1) \mathrm{av}^{\text {a }}{ }^{\text {a }}$	2.106	2.108	2.099
$\mathrm{C}(\mathrm{Cp} 2)-\mathrm{Fe}(2)_{\mathrm{av} .}{ }^{\text {b }}$	2.109	2.102	2.107
$\mathrm{CP1}-\mathrm{Fe}(1){ }^{\text {c }}$	1.729	1.739	1.732
$\mathrm{CP} 2-\mathrm{Fe}(2)^{\text {d }}$	1.742	1.752	1.738
$\mathrm{Fe}(1)-\mathrm{C}(16)[\mathrm{C}(3)]^{e}$	1.764(4)	1.748(7)	1.750(7)
$\mathrm{Fe}(1)-\mathrm{C}(17)[\mathrm{C}(4)]^{e}$	1.761(4)	1.768(9)	$1.739(6)$
$\mathrm{Fe}(2)-\mathrm{C}(26)[\mathrm{C}(5)]^{e}$	$1.755(6)$	1.753(9)	1.753(6)
$\mathrm{Fe}(2)-\mathrm{C}(27)[\mathrm{C}(6)]^{e}$	1.749(5)	1.747(11)	1.744(8)
$\mathrm{C}(16)-\mathrm{O}(11)[\mathrm{C}(3)-\mathrm{O}(2)]^{e}$	$1.145(5)$	1.159(9)	1.140(9)
$\mathrm{C}(17)-\mathrm{O}(12)[\mathrm{C}(4)-\mathrm{O}(3)]^{e}$	1.139(6)	1.146(11)	1.152(8)
$\mathrm{C}(26)-\mathrm{O}(21)[\mathrm{C}(5)-\mathrm{O}(4)]^{e}$	1.149(7)	1.152(10)	1.152(7)
$\mathrm{C}(27)-\mathrm{O}(22)[\mathrm{C}(6)-\mathrm{O}(5)]^{e}$	1.161(6)	1.142(14)	$1.150(10)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	2.073(7)	2.068(10)	2.071(5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.481(6)	1.474(13)	1.519(12)
$\mathrm{C}(2)-\mathrm{C}(3)$			$1.534(8)$
$\mathrm{C}(2)-\mathrm{O}(1)[\mathrm{C}(3)-\mathrm{O}(1)]^{s}$	1.219(5)	1.208(9)	1.203(5)
$\mathrm{C}(2)-\mathrm{Fe}(2)[\mathrm{C}(3)-\mathrm{Fe}(2)]^{s}$	2.008(3)	2.002(8)	1.992(5)

${ }^{4} \mathrm{Cp} 1: \mathrm{C}(11)-\mathrm{C}(15)$ for (1) and (3), $\mathrm{C}(10)-\mathrm{C}(14)$ for (2). ${ }^{b} \mathrm{Cp} 2$: $\mathrm{C}(21)-\mathrm{C}(25)$ for (1) and (3), $\mathrm{C}(20)-\mathrm{C}(24)$ for (2). ${ }^{\mathrm{c}} \mathrm{CPl}$: centroid of $\mathrm{C}(11)-\mathrm{C}(15)$ for (1) and (3) and $\mathrm{C}(10)-\mathrm{C}(14)$ for (2). ${ }^{4} \mathrm{CP} 2$: centroid of $\mathrm{C}(21)-\mathrm{C}(25)$ for (1) and (3) and $\mathrm{C}(20)-\mathrm{C}(24)$ for (2). ${ }^{e}$ For complex (2).
${ }^{f}$ For complex (3).
as anticipated from spectroscopic studies. The structure of (3) is described as a 1,5 -dimetalla-2-pentanone [Fe ... Fe 5.682(1) \AA].

The geometry of $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ in complexes (1) and (3) is a typical three-legged piano-stool structure with the $\mathrm{OC}-\mathrm{Fe}-\mathrm{CO}$ and $\mathrm{R}-\mathrm{Fe}-\mathrm{CO}\left(\mathrm{R}=\mathrm{CH}_{2}\right.$ or $\left.\mathrm{C}=\mathrm{O}\right)$ angles being approximately right angles. The bond lengths and angles $\left[\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) 1.364-1.434, \mathrm{Fe}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) 2.081-2.130, \mathrm{Fe}-\mathrm{CO}\right.$ $1.739-1.764$, and C-O $1.139-1.161 \AA ; \mathrm{C}-\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) 106.48$ -
109.48, $\mathrm{OC}-\mathrm{Fe}-\mathrm{CO} 92.54-94.84$, $\mathrm{OC}-\mathrm{Fe}-\mathrm{R}\left(\mathrm{CH}_{2}\right.$ or $\left.\mathrm{C}=\mathrm{O}\right)$ 87.61-95.74, and $\mathrm{C}_{5} \mathrm{H}_{5}-\mathrm{Fe}-\mathrm{CO}$ or $\left.\mathrm{R} 117.87-128.22^{\circ}\right]$ fall in the ranges of those reported for $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{M}^{\prime}\right)$-alkyl complexes $\left[\mathrm{M}^{\prime}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}_{4}{ }^{4} \mathrm{M}^{\prime}-\mathrm{CH}_{2} \mathrm{COC}_{5} \mathrm{H}_{4} \mathrm{Fe}\left(\eta \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$, ${ }^{9}$ $\mathrm{M}^{\prime}-\sigma-\mathrm{C}_{5} \mathrm{H}_{5},{ }^{10} \mathrm{M}^{\prime}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{M}^{\prime}(n=3$ or 4$),{ }^{11} \mathrm{M}^{\prime}-(\mathrm{CH}=\mathrm{CH})_{2}-$ $\left.\mathrm{M}^{\prime 12}\right]$ and an acyl complex $\left[\mathrm{M}^{\prime}-\mathrm{COCH}=\mathrm{PMe}_{3},{ }^{13} \mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $1.30-1.45, \mathrm{Fe}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \quad 1.98-2.26, \mathrm{Fe}-\mathrm{CO} 1.66-1.78$, and $\mathrm{C}-\mathrm{O} \quad 1.13-1.17 \AA ; \mathrm{C}-\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \quad 102-115$, $\mathrm{OC}-\mathrm{Fe}-\mathrm{CO}$ 89--96, OC-Fe-R 86--92, and $\mathrm{C}_{5} \mathrm{H}_{5}-\mathrm{Fe}-\mathrm{CO} 122-127^{\circ}$]. No significant and systematic differences in the structure between the $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ groups on the alkyl and acyl sides in complexes (1) and (3) is observed. Similarly, the structure of the $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}$ parts in (2) $\left[\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) 1.299-1.440\right.$,

Table 6. Selected intramolecular bond angles $\left({ }^{\circ}\right)$ for complexes (1)-(3)

	(1)	(2)	(3)
$\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Cp} 1)_{\text {av. }}{ }^{\text {a }}$	108.00	107.99	108.00
$\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Cp} 2)_{\text {av. }}{ }^{\text {b }}$	108.00	107.98	107.99
C-C(Cpl)-Me ${ }_{\text {av. }}{ }^{\text {a }}$		125.95	
$\mathrm{C}-\mathrm{C}(\mathrm{Cp} 2)-\mathrm{Me}_{\text {av. }}{ }^{\text {b }}$		125.95	
$\mathrm{Fe}(1)-\mathrm{C}(16)-\mathrm{O}(11)$	174.31(57)	172.70(86)	
$[\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(2)]^{\text {c }}$			178.53(61)
$\mathrm{Fe}(1)-\mathrm{C}(17)-\mathrm{O}(12)$	175.66 (58)		178.70(66)
[Fe(1)-C(4)-O(3)] ${ }^{\text {c }}$		174.19(94)	
$\mathrm{Fe}(2)-\mathrm{C}(26)-\mathrm{O}(21)$	176.43(39)		178.73(49)
$[\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(4)]^{\text {c }}$		175.21(89)	
$\mathrm{Fe}(2)-\mathrm{C}(27)-\mathrm{O}(22)$	178.44(40)		177.40(52)
$[\mathrm{Fe}(2)-\mathrm{C}(6)-\mathrm{O}(5)]^{\text {c }}$		177.10(77)	
CP1-Fe(1)-C(16)[C(3)] $]^{\text {c.d }}$	125.15(20)	125.38(30)	128.22(16)
$\mathrm{CP} 1-\mathrm{Fe}(1)-\mathrm{C}(17)[\mathrm{C}(4)]^{c, d}$	124.97(14)	125.63(26)	125.16(22)
$\mathrm{CP} 1-\mathrm{Fe}(1)-\mathrm{C}(1)^{\text {d }}$	118.19(13)	120.26(29)	121.29(12)
$\mathrm{CP} 2-\mathrm{Fe}(2)-\mathrm{C}(26)[\mathrm{C}(5)]^{\text {c,e }}$	123.97(17)	126.19(34)	127.36(28)
$\mathrm{CP}^{2}-\mathrm{Fe}(2)-\mathrm{C}(27)[\mathrm{C}(6)]^{\mathrm{c,e}}$	128.20(19)	123.17(34)	125.84(16)
$\mathrm{CP}^{2-\mathrm{Fe}}(2)-\mathrm{C}(2)[\mathrm{C}(3)]^{\text {c.e }}$	118.30(15)	120.39(25)	117.87(23)
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.99(38)	115.08(69)	114.61(36)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$			110.87(53)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Fe}(2)$	117.08(29)	117.63(52)	
$[\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Fe}(2)]^{s}$			117.44(31)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	121.63(31)	122.49(70)	
[$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)]^{s}$			120.17(46)
$\mathrm{Fe}(2)-\mathrm{C}(2)[\mathrm{C}(3)]^{\mathcal{S}}-\mathrm{O}(1)$	120.85(30)	119.77(61)	122.33(42)

${ }^{4} \mathrm{Cpl}$: centroid of $\mathrm{C}(11)-\mathrm{C}(15)$ for (1) and (3), $\mathrm{C}(10)-\mathrm{C}(14)$ for (2).
${ }^{b} \mathrm{Cp} 2$: centroid of C(21)-C(25) for (1) and (3), C(20)-C(24) for (2). ${ }^{\text {c For }}$ complex (2). ${ }^{d}$ CP1: centroid of C(11)-C(15) for (1) and (3), C(10)-C(14) for (2). ${ }^{\circ} \mathrm{CP}$: centroid of $\mathrm{C}(21)-\mathrm{C}(24)$ for (1) and (3) and $\mathrm{C}(20)-\mathrm{C}(24)$ for (2) ${ }^{f}$ For complex (3).
$\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)-\mathrm{Me}$ 1.473-1.572, $\quad \mathrm{Fe}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \quad 2.080-2.132$, $\mathrm{Fe}-\mathrm{CO} 1.747-1.768$, and $\mathrm{C}-\mathrm{O} 1.142-1.159 \AA ; \mathrm{C}-\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ 105.71-110.11, OC-Fe-CO 93.82(37), 94.00(46), OC-Fe-R 89.22-94.66, and $\mathrm{C}_{5} \mathrm{Me}_{5}-\mathrm{Fe}-\mathrm{CO}$ or $\mathrm{R} 120.39-126.19^{\circ}$] is essentially the same (also the three-legged piano-stool structure) as that of a rare example of an $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{M}^{\prime \prime}\right)$-alkyl complex $\mathrm{M}^{\prime \prime}-\mathrm{C}_{5} \mathrm{H}_{5} .{ }^{14}$

Interatomic distances and bond angles of the bridging ketene and oxopropanediyl ligands are summarized in Table 7. The $\mathrm{Fe}-\mathrm{C}$ (acyl) bond lengths are shorter than the Fe-C(alkyl) lengths by $0.07 \AA$. This value is greater than the difference in bond lengths between $s p^{3}$ and $s p^{2}$ carbon atoms $\left(0.04 \AA\right.$). ${ }^{15}$ Therefore shortening of the $\mathrm{Fe}-\mathrm{C}(\mathrm{acyl})$ bond arises from the oxycarbene resonance form (B). Bond angles associated with the bridging ligands demonstrate that the methylene and acyl carbons are $s p^{3}$ and $s p^{2}$ hybridized, respectively.

It should be also noted that the $\mathrm{CH}_{2}-\mathrm{CO}$ bond distances of μ-ketene complexes (1) $[1.481(6) \AA]$ and (2) $[1.474(13) \AA]$ are substantially shorter (ca. $0.05 \AA$) than that of (3) $[1.534(8) \AA]$ and acyl iron complexes $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}-\mathrm{COMe}(\mathrm{pz}=\right.$ pyrazolyl) ${ }^{16} \quad 1.522(8) ; \quad \mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)-\mathrm{COMe},{ }^{17}$ $1.531(15) \AA]$ and, on the contrary, that the $\mathrm{C}=\mathrm{O}$ bond distances of (1) $[1.219(5) \AA]$ and (2) $[1.208(9) \AA]$ are slightly longer than that of (3) $[1.203(5) \AA]$. The latter compares with hitherto reported acyl $\mathrm{C}=\mathrm{O}$ bond distances: $\mathrm{Fe}(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}-\mathrm{COMe}$, $1.193(6) ; \mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$-COMe, $1.228(13) ; \mathrm{Fe}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)-\mathrm{COPh},{ }^{18} 1.22(3)$; and $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}-$ $\mathrm{COCH}=\mathrm{PMe}_{3},{ }^{13} 1.234 \AA$. Electron-donating groups such as PPh_{3} on metal centres and PMe_{3} on an x-carbon of the acyl group elongate the $\mathrm{C}=\mathrm{O}$ bonds. In Figure 4 the Newman projection of complex (1) along the $\mathrm{C}(1)-\mathrm{C}(2)$ is shown. The dihedral angles θ between the acyl $\mathrm{C}=\mathrm{O}$ plane and the $\mathrm{C}(2)-\mathrm{Fe}(2)$ plane are 75.6 and 67.8°, respectively. As a whole, the conformations observed for (1) and (2) should maximize the

Figure 4. Geometry of the bridging ketene ligand of complex (1)

Table 7. Structural parameters for various β-oxoalkyl complexes*

overlap between the electron-diffusing $\mathrm{Fe}-\mathrm{CH}_{2}$ bond and the electron-deficient p orbital of the acyl carbon as shown in Figure 4 , in other words to delocalize the bonding electron by the contribution of (C), although such a conformation is frequently observed for organic carbonyl compounds and the θ value of (3) (78.8°) lacking a suitable resonance form for back donation from the $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ group on the alkyl side is similar to that in (1) and (2). Such observations have been reported for β-oxoalkyl metal complexes (metal C-enolates) as shown in Table 7.
The geometry of the μ-ketene ligands in complexes (1) and (2) is essentially the same as those of hitherto reported $\mu-\eta^{2}$-(C,C)ketene complexes, $\left[\mathrm{Ru}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)(\mathrm{CO})_{3}\right]^{6}$ and $\left[\mathrm{Os}_{3}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)(\mathrm{CO})_{12}\right]^{5}$ except for unusual dihedral angles owing to linkage of the metal atoms bonded to the μ-ketene ligands by metal-metal bonds. Shortening of the $\mathrm{CH}_{2}-\mathrm{CO}$ bond and elongation of the $\mathrm{C}=\mathrm{O}$ bond indicates the presence of a contribution from the π-complex resonance form (\mathbf{C}), which is also confirmed by i.r. studies. ${ }^{3}$
Based on the result of an extended-Hückel molecular orbital calculation by Hoffmann and co-workers, ${ }^{19}$ in the $\mathrm{M}\left(\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}-\mathrm{X}$ type complexes the $a^{\prime \prime}$ orbital plays a dominant role in determining the orientation of π-acidic ligands. Thus, a carbene ligand and an olefinic ligand tend to appear in the 'upright' and 'bisecting' conformations, respectively. The contribution of the oxycarbene resonance form (B) observed for complexes (1)-(3) suggests that the acyl parts adopt the 'upright' conformation, which has actually been observed for complexes containing a strong π acceptor such as $: \mathrm{CR}_{2}{ }^{20}$ or an electron-donating ancillary ligand such as $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}-$ $\mathrm{PPh}_{2} .{ }^{21}$ The torsion angles between $\mathrm{CP} 2-\mathrm{Fe}(2)$ [CP2: centroid of $\mathrm{C}(21)-\mathrm{C}(25)$ for (1) and $\mathrm{C}(20)-\mathrm{C}(24)$ for (2)] and $\mathrm{C}(2)$ -[C(3)]-O(1) are 90.26 (1), 81.92 (2), and 94.80° (3), which correspond to the 'bisecting' conformation, contrary to expectation. On the other hand, the π-resonance form (C) should lead to the 'bisecting' conformation around Fe(1). However, the dihedral angles between the $\mathrm{CP} 1-\mathrm{Fe}(1)$ [CP1: centroid of $\mathrm{C}(11)-\mathrm{C}(15)$ for (1) and $\mathrm{C}(10)-\mathrm{C}(14)$ for (2)] and $\mathrm{C}(1)-\mathrm{C}(2)$ planes are 166.64 (1) and $169.51^{\circ}(2)$, respectively, and CP1 and $\mathrm{C}(2)$ are located in the antiperiplanar conformations. Thus in the solid state the geometry around the metal centres is determined by the need to minimize steric repulsions, and does not reflect orbital interactions.

Acknowledgements

This work was financially supported by the Asahi Glass Foundation for Industrial Technology and the Ministry of

Education, Science, and Culture of Japan. Special thanks are due to Professor H. Suzuki for helpful discussions on the X-ray structure analyses.

References

1 G. L. Geoffroy and S. L. Bassner, Adv. Organomet. Chem., 1988, 28, 1.
2 G. Blyholder and P. H. Emmett, J. Phys. Chem., 1960, 64, 470; M. Ichikawa, K. Sekizawa, K. Shikakura, and M. Kawai, J. Mol. Catal., 1981, 11, 137; A. Takeuchi and J. R. Katzer, J. Phys. Chem., 1982, 86, 2438; P. H. McBreen, W. Erley, and H. Ibach, Surf. Sci., 1984, 148, 1292.

3 M. Akita, A. Kondoh, and Y. Moro-oka, J. Chem. Soc., Chem. Commun., 1986, 1296; M. Akita, A. Kondoh, T. Kawahara, T. Takagi, and Y. Moro-oka, Organometallics, 1988, 7, 366.
4 J. K. P. Ariyaratne, A. M. Bierrum, M. L. H. Green, M. Ishaq, C. K. Prout, and M. G. Swanwick, J. Chem. Soc. A, 1969, 1309.
5 E. D. Morrison, G. R. Steinmetz, G. L. Geoffroy, W. C. Fultz, and A. L. Rheingold, J. Am. Chem. Soc., 1984, 106, 4783.

6 N. M. Doherty, M. J. Fildes, N. J. Forrow, S. A. R. Knox, K. A. Macpherson, and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1986, 1355.
7 M. Akita, N. Kakinuma, and Y. Moro-oka, J. Organomet. Chem., 1988, 348, 91.
8 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
9 V. B. Rybakov, L. A. Aslanov, V. M. Ionov, and S. A. Eremin, J. Struct. Chem. (Engl. Transl.), 1983, 24, 230.

10 M. J. Bennett, jun., F. A. Cotton, A. Davison, J. W. Fackler, S. J. Lippard, and S. M. Morehouse, J. Am. Chem. Soc., 1966, 88, 4371.
11 L. Pope, P. Sommerville, and M. Laing, J. Organomet. Chem., 1976, 112, 309.
12 M. R. Churchill and J. Wormald, Inorg. Chem., 1969, 8, 1936.
13 H. Blau, W. Malish, S. Voran, K. Blank, and C. Kruger, J. Organomet. Chem., 1980, 202, C33.
14 M. E. Wright, G. O. Nelson, and R. S. Glass, Organometallics, 1985, 4, 245.
15 J. March, 'Advanced Organic Chemistry: Reactions, Mechanisms, and Structure,' McGraw-Hill International, Tokyo, 1977, p. 24.
16 F. A. Cotton, B. A. Frenz, and A. Shaver, Inorg. Chim. Acta, 1973, 7, 161.

17 T. G. Attig, R. G. Teller, S-M. Yu, R. Bau, and A. Wojcicki, J. Am. Chem. Soc., 1979, 101, 619.
18 V. A. Semion and Y. T. Struchkov, J. Struct. Chem. (Engl. Transl.), 1969, 10, 563.
19 B. E. R. Schilling, R. Hoffmann, and D. L. Lichtenberger, J. Am. Chem. Soc., 1979, 101, 585.
20 A. M. Crespi and D. F. Shriver, Organometallics, 1985, 4, 1830.
21 H. Felkin, B. Meunier, C. Pascard, and T. Prange, J. Organomet. Chem., 1977, 135, 361.

Received 27th July 1988; Paper 8/03067G

[^0]: $+\mu$-Ketene- $C^{1}\left(\mathrm{Fe}^{1}\right) C^{2}\left(\mathrm{Fe}^{2}\right)$-bis[dicarbonyl(η-cyclopentadienyl)iron], -bis[dicarbonyl(η-pentamethylcyclopentadienyl)iron], and μ-1-oxo-propane-1,3-diyl-bis[dicarbonyl(η-cyclopentadienyl)iron].
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

